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Abstract. Previous research shows that diverse teams in background
and skills can outperform homogeneous teams. However, people often
prefer to work with others who are similar and familiar and fail to as-
semble teams with high diversity levels. We propose a team formation
algorithm that suggests diverse teams based on individuals’ social net-
works, allowing them to keep high familiarity levels. Our novel algorithm
is based on the NSGA-II genetic optimization that splits students into
well-connected and diverse teams within an organizational network. It
optimizes measures of team communication cost and diversity in O(n2)
time. The optimization finds Pareto optimal solutions that optimize both
metrics, returning teams that have both diversity in member attributes
and previous connections between members. We tested the algorithm
on real team formation data collected from the MyDreamTeam plat-
form. The solutions provided by the algorithm are superior to the teams
assembled by the students, in both diversity and communication cost
measures.

Keywords: Team Formation, Social Networks, Diversity, Genetic Algo-
rithms

1 Introduction

In traditional classes, teachers can either assign students manually to different
teams or let them self-assemble their teams. Choosing the method is not an easy
decision since both have limitations. On the one hand, assigning students man-
ually to teams increases the likelihood of heterogeneous teams, having students
from different gender, status, demographics, and competence. Forming diverse
teams can help students learn from other classmates with different strengths
and backgrounds, which can lead to collaborative solutions [9]. However, stu-
dents can be against working with unfamiliar classmates. When an instructor
assembles a team, students are likely to feel forced to work with other class-
mates, a situation that decreases the likelihood of working effectively together
[5]. Moreover, constraints such as testing several combinations from a large class
or checking students’ availability will make the team formation task even harder.
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On the other hand, when students assemble their own teams, they can show more
commitment and positive group attitudes [2] since they are more likely to choose
partners based on friendship and similarity [7]. Although, students are less likely
to give relevance to choosing teammates who possess different backgrounds or
sets of skills. As a result, students will tend to form homogeneous teams be-
cause they prefer to choose teammates who are similar and familiar [10], and
the likelihood of forming creative and high-performing teams decreases [18].

In this paper, we introduce a novel team formation algorithm that combines
both strategies to assemble diverse teams based on students’ current social net-
works. Based on a NSGA-II genetic optimization, this algorithm considers met-
rics for both diversity and previous relationships between team members and
determines optimized team assignments for all students in the networks. The
contributions of this paper are (i) the definition of the diverse team formation
problem based on members’ social networks, (ii) a genetic approach to solving
that problem, and (iii) an experimental evaluation of our optimization compared
to teams randomly assembled and assembled by students on the same network.

The paper is structured as follows. Section 2 describes previous studies in
team formation algorithms. We define the team formation problem in Section
3 and our algorithm in Section 4. We present an empirical evaluation of this
algorithm in Section 5. We end this article by discussing the implications of this
algorithm and future work.

2 Related Work

Computer science research has devoted considerable attention to developing
team-formation algorithms and frameworks. Forming efficient teams is a complex
task since finding the most diverse team combination requires assessing all the
possible solutions. In a group with n members that are splitting up into teams of
m members, the total number of possible ways to form teams is n!/((n−m)!m!),
where n > m. For example, forming teams of size 5 in a 50-student class, the
instructor must evaluate 2,118,760 combinations. Considering all team combi-
nations that systems can provide—of different sizes and memberships—the pri-
mary goal of team formation algorithms is to find an efficient method to assemble
teams. This problem has been classified as an NP-hard problem since finding the
best team combination requires computing all the possible team combinations
(i.e., brute-force search), which cannot be done in polynomial time [6]. Contribu-
tions in this field are based on what variables and mechanisms are considered to
find optimal solutions that approximate the best solutions, using less computer
memory and less time.

Through several methods and algorithms, these systems’ objective function
is to maximize a specific team’s characteristics (e.g., social connections, skills
covered by the team) subject to communication or personnel costs. Some algo-
rithms consider the sum of individuals’ skills as part of the optimization problem
(e.g., forming a team of experts from a research community), and others assign
members according to their specific roles in the team [19]. Other systems con-
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sider members’ social networks to assemble their groups. One example is Lappas
et al. [14], which considers the team-formation problem using members’ skills
and social networks. The systems’ goals are not only to assemble groups that
meet the tasks’ skill requirements but also to assemble teams that can work
effectively together. Some crowdsourcing systems fit into this category since one
of their challenges is to divide projects’ tasks and assign them to crowd-workers
according to their skills and availability [20]. Optimizations including other fac-
tors in addition to communication cost have found success in the use of discrete
particle swarm optimizations [22] and genetic optimizations.

Multiple studies consider the role of social networks, previous collaborations,
and the intensity of interactions among a pool of individuals to assemble teams
[1, 17, 12]. Other developed systems consider how members can complement their
personalities and skills to create balanced teams [16]. Latorre and Suárez [15]
develop a framework that facilitates team assembly in a systematic and repro-
ducible way. This framework uses workers’ social networks, prior experience,
and previous collaborations to build compatibility networks among participants,
where each connection represents whether the workers have compatible (or in-
compatible) social skills. In contrast to these previous studies, we propose an
algorithm that optimizes for diversity in team formation within social networks.

3 The Diverse Team Formation Problem

Given a social network N of students U with individual characteristics, the
team formation problem consists of assigning students to teams that maximize
within-team connection and diversity.

3.1 Inputs

The algorithm accepts a list of n students U = {u1, u2..., un}. Every student
has values for l different categorical attributes G = {g1, g2..., gl} and m different
continuous attributes C = {c1, c2..., cm}. These attributes may have different
constraints. Each attribute represents some information about the student, such
as age, gender, or race. The second parameter is an undirected and unweighted
network N that represents social connections among the n students. In other
words, if students i and j are friends (i, j ∈ U), then Ni,j = 1. Otherwise,
Ni,j = 0. The network N must be fully-connected (i.e., for any two students in
the network there must be some path of connections between them). Finally,
the algorithm requires a team size k, which specifies the number of members
per team. The students must be able to divide evenly into teams with no extras
(i.e., n mod k = 0).

The genetic algorithm accepts two parameters, the population size P and the
maximum number of generations. The population size P is the total number of
chromosomes in the population of the algorithm, while the maximum number of
generations is the generation at which the optimization stops.
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3.2 Output

The algorithm returns a list of team solutions T of size P . A solution Tp, p ∈ P ,
represents a specific combination of q teams based on the n students, Tp =
{t1, ..., tq}, p ∈ P . In each solution, (1) each team t ∈ Tp is formed by k students,
where k < n; (2) each student u ∈ U is in exactly one team t from Tp; and
(3) all teams of Tp have size k. The solutions are optimized for both diversity
and communication cost as outlined below. The solution set is comprised of
successive fronts of Pareto-optimal solutions. A solution is Pareto optimal if
there is no other solution that is superior in both metrics.

3.3 Metrics

Our algorithm is a bi-objective optimization on two metrics: communication cost
and diversity. The goal of the algorithm is to find a set of Pareto optimal solutions
to the problem, where no solution in the set is inferior to another solution in
both metrics.

Communication cost Kargar et al. [13] found the total sum of distances be-
tween team members to be a reasonable measure of communication cost, as it is
more stable to changes in the network than other potential measures. We define
the distance between students as the shortest path length while traversing the
edges of the network from one student to the other.

The goal of optimizing communication cost is to form teams with certain
levels of familiarity. Teams with lower communication costs exchange information
and ideas more efficiently than teams with higher communication cost, enabling
more effective teamwork [11]. We define the sum of distances (denoted Cc) of a
team t, t ∈ T , with k students as:

Cct =

k∑
i,j∈t,i6=j

D(ui, uj)

where D(ui, uj) returns the length of the shortest path between nodes ui and
uj , and i, j ∈ t, i 6= j. Our algorithm minimizes the average sum of distances
across all formed teams in the student network. Computing the sum of distances
of a set of teams runs in O(n2) time. Minimizing the sum of distances is an NP-
hard problem [14]. We then use a genetic algorithm to approximate the optimal
solution.

Diversity metric In addition to Cc, we include as a goal generating diverse
teams with a broad array of backgrounds and skill sets. We define a diversity
metric based on two measures for team diversity [8]. The first one is coefficient
of variation (CV ), which is defined as the ratio of the standard deviation to
the mean of a variable x, and its formula is

√∑
(xi − xmean)2/n/xmean. A

low score means all members have similar levels of the attribute, and a high
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score means that members have different levels of the attribute. The coefficient
of variation measures continuous team member attributes. The second team
diversity measure is the Blau index B, which is defined as 1−

∑
p2i and p is the

proportion of team members who fall into a particular category i. A low score
means that all members fall into the same category, and a high score means that
members fall into different categories. This metric works with categorical team
member attributes. These two team diversity measures are useful because they
do not change when the input data is scaled up or down linearly, and they both
tend to stay around the same values. This allows us to aggregate diversity for
different attributes into a single value.

The overall diversity metric V of a team t is defined as the sum of B for all
categorical variables and CV for all continuous variables. In other words,

Vt =

l∑
i

k∑
j

(
√∑

(xi,j − xi,mean)2/k/xi,mean) +

m∑
i

o∑
j

(1−
∑

p2i,j,t)

where l is the number of continuous team member attributes, m is the number
of categorical team member attributes, k is the number of members of the team
t, xi,j is the value of the continuous attribute i for the student j, xi,mean is the
average of the continuous attribute i for the team t, o is the number of values
for the categorical attribute i, and pi,j,t is the proportion of students with the
categorical attribute i with the value j in the team t. The algorithm maximizes
the average V across all formed teams in the network.

4 Algorithm

In order to solve the diverse team formation problem, we propose a multi-
objective genetic optimization. We chose to implement a genetic optimization
because of their efficiency: it can run in O(n2) and generate a set of optimized
solutions to multi-objective problems such as diverse team formation.

4.1 Genetic optimization

We use the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) algorithm
formulated by [4]. Genetic algorithms optimize a set of possible solutions called
chromosomes into an optimized solution through natural selection, imitating
evolution in nature. NSGA-II is a multi-objective genetic optimization that em-
ploys elitism (i.e., selecting the best chromosomes of the current generation to
the next generation) and runs in O(n2) time. Elitism ensures that Pareto-optimal
solutions are kept in the population, even if they are found early on in the opti-
mization. This improves the ability of the optimization to converge on the correct
Pareto front in a reasonable number of generations. The non-dominated sorting
ensures that one objective will not dominate the other. These properties improve
the ability of the algorithm to provide a high performing Pareto front in a small
number of generations. We adapted the NSGA-II algorithm to our specific team
formation problem. The steps of the optimization are outlined below.
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Chromosomes. In our implementation, each chromosome represents a poten-
tial set of teams T in the network N . The population of solutions is initialized
with each chromosome having students assigned to random teams. The total
number of chromosomes in the population is an input parameter. Chromosomes
are stored as 2-dimensional arrays of shape (q, k), where q is the number of
teams and k is the number of students per team. Each chromosome is a poten-
tial solution to the problem, and the goal is to output a high-performing set of
chromosomes.

Input : Two parent chromosomes p1 and p2, number of teams q, a list
U including all students

Output: A child chromosome c, with q teams
1 initialization;
2 teampool ← Concatenate(p1, p2);
3 c ← SelectNRandomElements(teampool, q);
4 repeat locations ← [];
5 missing members ← U ;
6 for t in c do
7 for m in t do
8 if m not in missing members then
9 Append(repeat locations, [ GetIndex(c, m),

GetIndex(GetIndex(c, m), m)]);

10 end
11 else
12 Remove(missing members, m);
13 end

14 end

15 end
16 for l in repeat locations do
17 m ← SelectNRandomElements(missing members, 1);
18 c[l[0]][l[1]] ← m;
19 Remove(missing members, m);

20 end
21 return c;

Algorithm 1: Crossover of two chromosomes. Each chromosome is a
potential solution to the team formation problem.

Crossover. The first step of each generation is to take the existing chromosomes
and generate offspring from random pairings of parent chromosomes until the
population size is doubled. NSGA-II is designed to work on any data structures
that can be reasonably combined to produce offspring in the crossover step. Our
method of crossover is outlined in Algorithm 1. This method involves random
sampling of members in forming teams. The random sampling provides sufficient
mutation for the algorithm to introduce chromosome diversity into the popula-
tion without adding another mutation step. One pitfall with this approach is
that it is difficult to control the level of mutation in the crossover.
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Non-dominated sort. After the crossover step, the overall diversity V and
the communication cost Cc of each chromosome is calculated and stored. This
includes both parent chromosomes and child chromosomes. A front is created
consisting of every chromosome that is Pareto optimal. For any chromosome in
the first front, there exists no other chromosome in the population with more
diverse and more connected teams.

After the first front is found, those solutions are kept, and a second front is
found, which consists of Pareto optimal solutions disregarding solutions in the
first front. The sort keeps finding successive fronts until the total number of
chromosomes surpasses the predetermined population size.

Crowding distance. After multiple fronts are found, there may be more so-
lutions in all of them combined than the population size of the algorithm. In
order to select the best chromosomes for the algorithm, a crowding distance
metric is computed that determines how close chromosomes are to each other in
performance. The population is then trimmed down to the correct size by elim-
inating chromosomes that perform similarly to other chromosomes. This helps
keep a broader front of solutions instead of keeping redundant chromosomes.
These chromosomes form the parents of the next generation of optimization.

4.2 Optimized solutions

After the optimization has run through the previously specified number of gener-
ations, the algorithm returns an output of p solutions where p is the population
size. These solutions form the final Pareto front. A set of Pareto optimal solu-
tions is superior to a single solution for our bi-objective optimization because it
allows the teacher to evaluate multiple solutions exploring different priorities for
diversity and communication cost.

5 Empirical Evaluation

We evaluated our algorithm on data from real team formation cases and com-
pared our optimized teams to the teams assembled by students. The algorithm
was implemented in Python 3.8.5., and the experiments were conducted on an
Intel Core i5-8265U computer with 8GB of RAM.

5.1 Dataset

Our dataset comes from the MyDreamTeam recommender [3], which helps stu-
dents assemble their own teams. On this platform, students create profiles, search
for others, and send invitations that can be accepted or rejected until teams are
formed. This dataset includes students from university courses in the US. The
team task given to the students was a project related to their coursework for the
undergraduate courses and a case study analysis and discussion tasks for gradu-
ate courses. Each student only assembled into one team and participated in only
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one course. Relationships between students were determined by their responses
to a survey asking them which other classmates of the course they already knew.

5.2 Experimental Setup

We ran the optimization on two courses of this dataset: The first course has
60 students with 771 connections, which were split into 10 teams. The second
course has 48 students with 211 connections, which were split into 12 teams. The
optimization was run for 50 generations with a population size of 20 chromo-
somes. The control measures are the average communication cost, and diversity
of 20 randomly generated possible solutions, with no optimization and students
shuffled into teams.

5.3 Composition Measures

To evaluate the quality of the teams produced by this algorithm, we compared
the experimental results to the real teams assembled by the students on My-
DreamTeam. To evaluate the differences, we used (a) communication cost (Cc)
measured by the net sum of distances and (b) overall diversity (V ) measured by
an aggregate of appropriate diversity indices, as outlined above in Section 3.3.

5.4 Results

Figure 1 compares team solutions generated by our optimization (blue circles)
to the teams self-assembled by the students in each course (orange triangles).
The x-axis represents the total teams’ communication cost (Cc) of the solutions.
Lower scores on this axis represent solutions with lower communication costs
(i.e., teams internally more connected). The y-axis represents the total teams’
diversity score (V ) of the solutions. Lower scores in this axis represent solutions
with less diverse teams. The optimized solution outperforms the self-assembled
teams in both diversity and communication cost metrics for both sets of stu-
dents. Both solutions significantly outperform the randomly generated teams in
communication cost. However, the self-assembled teams’ diversity scores are infe-
rior compared to the random teams, while the optimized teams are more diverse
than both the randomly generated teams and the self-assembled teams. The dif-
ference in measures between the three solutions was greater in the smaller, less
connected group than in the larger, more connected group.

5.5 Performance

As stated before, every step of this algorithm runs in O(n2) time. We found 20
chromosomes running for 50 generations to be sufficiently powerful for a high-
performing Pareto front. On average, the optimizations for the first course ran
for 11.676 seconds and used 60.74 MB of memory. The optimization for the
second course ran in 8.628 seconds and used 59.81 MB of memory.
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Fig. 1. Comparison of optimized solutions and self-assembled teams on diversity
and communication cost metrics. The optimized solutions are blue circles, the self-
assembled solution is the orange triangle, and the randomized solution is the green
square.

6 Discussion

Communication cost. The self-assembled teams had a lower communication
cost than the set of randomly generated teams, suggesting that people naturally
tend to form teams with people they know. Still, our genetic optimization out-
performed self-assembled teams in communication cost. People generally tend to
form teams with those they are familiar with, which increments satisfaction and
commitment with the team [21]. Our algorithm optimized team communication
cost to lower values than the self-assembled teams observed, suggesting that
while team members have some intuition on forming well-connected teams, they
lack reliable knowledge on higher-order connections between students. [11] found
that indirect connections still greatly influence performance within community
models. Even if two team members do not directly know each other, their indi-
rect relationship still matters, even though it is difficult for individual students
to know about their relationships with students other than those that they are
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directly connected to. Our algorithm excels in considering the broader social
network structure because it is given a complete view of relationships between
students that is not available to the students themselves.

Team Diversity. The genetic optimization was significantly superior to self-
assembled teams in maximizing diversity. The self-assembled teams were actu-
ally less diverse than the set of randomly generated teams, indicating that stu-
dents preferred to team up in less diverse teams in general. Our team formation
algorithm presents a significant opportunity to boost team diversity over self-
assembled teams and guarantees high familiarity levels among team members.
As prior research suggests, self-assembled teams have a tendency to form into
homogeneous groups of members with similar attributes. These homogeneous
teams may perform worse than more diverse teams for complex and creative
tasks [21]. Team formation algorithms are less subject to these human biases
than in team self-assembly, and can thus optimize teams for diversity.

Tradeoffs. The algorithm generates diverse teams with a level of familiarity
due to prior connections. While it was definitely possible to form very connected
and very diverse teams, we did notice a tradeoff in the absolute extreme of
both metrics: the solutions that were the most diverse, or the most connected
teams, often sacrificed performance in the other metric. However, solutions are
generally found that score nearly optimally in both metrics. This is apparent
from the points closest to the upper left corner in Figure 1.

Limitations. This work presents the following limitations. The measures for
diversity and communication cost are scaled specifically to each unique network,
and thus cannot be compared across different sets of users. Moreover, the di-
versity measure is an aggregate of multiple diversity metrics for each attribute
sampled; thus, it is difficult to assign any real meaning to the diversity metric
apart from relative differences with the same network. For a 60 member net-
work split into teams of 6, the theoretical maximum value for diversity is 34.5:
the upper limit changes depending on the size of each team. Future algorithms
should consider how different measures of diversity can be analyzed separately
and according to the specific pool of students.

7 Conclusion and Future Work

In this paper, we studied the problem of assembling teams from a social net-
work that minimize communication cost and homogeneity. We defined objective
functions for the two and proposed a genetic algorithm for finding the most
well-connected diverse teams. Our experiments on a real dataset showed that
the proposed algorithm produces diverse teams with lower communication cost
and higher diversity than those assembled by the students.
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As future work, we will compare this algorithm with other algorithms im-
plementations (e.g., Brute-Force, Rarest-First, Steiner) and datasets to
evaluate our algorithm’s performance. Moreover, we will explore how to incor-
porate constraints in this team formation problem, such as the task requiring a
specific set of skills, and consider different levels of relationships between students
and evaluate the algorithm’s performance on weighted and directed networks.
Finally, we will compare whether teams assembled with this algorithm can out-
perform teams assembled randomly, by instructors, or by the same students. This
testing should be done in different educational contexts. By combining both di-
versity metrics and students’ social networks, we expect that students can work
together with familiar individuals who can work better in tasks that require a
combination of diverse backgrounds and skills.
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